
Original Paper

Machine Learning Model for Predicting Coronary Heart
Disease Risk: Development and Validation Using Insights
From a Japanese Population–Based Study

Thien Vu1,2,3, MD, PhD; Yoshihiro Kokubo4, MD, PhD; Mai Inoue1, ME; Masaki Yamamoto1, BE; Attayeb
Mohsen1,5, MD, PhD; Agustin Martin-Morales1, PhD; Research Dawadi1, PhD; Takao Inoue1,6, PhD; Jie Ting
Tay1, MRES; Mari Yoshizaki1, PhD; Naoki Watanabe1, PhD; Yuki Kuriya1, PhD; Chisa Matsumoto4,7, MD, PhD;
Ahmed Arafa4,8, MD, PhD; Yoko M Nakao4, MD, PhD; Yuka Kato4,9, MD, PhD; Masayuki Teramoto4, MD, MPH;
Michihiro Araki1,10,11, PhD
1Artificial Intelligence Center for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
2NCD Epidemiology Research Center, Shiga University of Medical Science, Shiga, Otsu, Japan
3Department of Cardiac Surgery, Cardiovascular Center, Cho Ray Hospital, Ho Chi Minh City, Vietnam
4Department of Preventive Cardiology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
5Libyan Centre for Dental Research, Zliten, Libya
6Faculty of Informatics, Yamato University, Osaka, Japan
7Department of Cardiology, Center for Health Surveillance and Preventive Medicine, Tokyo Medical University Hospital, Tokyo, Japan
8Department of Public Health, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
9Division of Health Sciences, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
10Graduate School of Medicine, Kyoto University, Kyoto, Japan
11Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan

Corresponding Author:
Thien Vu, MD, PhD
Artificial Intelligence Center for Health and Biomedical Research
National Institutes of Biomedical Innovation, Health and Nutrition
3-17 Senrioka-shinmachi
Osaka, 566-0002
Japan
Phone: 81 8093069457
Email: thienvuyd01@gmail.com

Abstract
Background: Coronary heart disease (CHD) is a major cause of morbidity and mortality worldwide. Identifying key risk
factors is essential for effective risk assessment and prevention. A data-driven approach using machine learning (ML) offers
advanced techniques to analyze complex, nonlinear, and high-dimensional datasets, uncovering novel predictors of CHD that
go beyond the limitations of traditional models, which rely on predefined variables.
Objective: This study aims to evaluate the contribution of various risk factors to CHD, focusing on both established and novel
markers using ML techniques.
Methods: The study recruited 7672 participants aged 30-84 years from Suita City, Japan, between 1989 and 1999. Over
an average of 15 years, participants were monitored for cardiovascular events. A total of 7260 participants and 28 variables
were included in the analysis after excluding individuals with missing outcome data and eliminating unnecessary variables.
Five ML models—logistic regression, random forest (RF), support vector machine, Extreme Gradient Boosting, and Light
Gradient-Boosting Machine—were applied for predicting CHD incidence. Model performance was evaluated using accuracy,
sensitivity, specificity, precision, area under the curve, F1-score, calibration curves, observed-to-expected ratios, and decision
curve analysis. Additionally, Shapley Additive Explanations (SHAPs) were used to interpret the prediction models and
understand the contribution of various risk factors to CHD.
Results: Among 7260 participants, 305 (4.2%) were diagnosed with CHD. The RF model demonstrated the highest perform-
ance, with an accuracy of 0.73 (95% CI 0.64‐0.80), sensitivity of 0.74 (95% CI 0.62‐0.84), specificity of 0.72 (95% CI
0.61‐0.83), and an area under the curve of 0.73 (95% CI 0.65‐0.80). RF also showed excellent calibration, with predicted
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probabilities closely aligning with observed outcomes, and provided substantial net benefit across a range of risk thresholds,
as demonstrated by decision curve analysis. SHAP analysis elucidated key predictors of CHD, including the intima-media
thickness (IMT_cMax) of the common carotid artery, blood pressure, lipid profiles (non–high-density lipoprotein cholesterol,
high-density lipoprotein cholesterol, and triglycerides), and estimated glomerular filtration rate. Novel risk factors identified as
significant contributors to CHD risk included lower calcium levels, elevated white blood cell counts, and body fat percentage.
Furthermore, a protective effect was observed in women, suggesting the potential necessity for gender-specific risk assessment
strategies in future cardiovascular health evaluations.
Conclusions: We developed a model to predict CHD using ML and applied SHAP methods for interpretation. This approach
highlights the multifactor nature of CHD risk evaluation, aiming to support health care professionals in identifying risk factors
and formulating effective prevention strategies.
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Introduction
Coronary heart disease (CHD) remains a leading cause of
morbidity and mortality worldwide, responsible for approxi-
mately 9.14 million deaths in 2019 [1,2]. Early identification
of individuals at high risk is crucial, as timely interventions
can significantly reduce the likelihood of severe outcomes
like heart attacks and strokes. Studies have shown that early
prediction and intervention can lead to a notable reduction
in CHD-related mortality through preventive treatments such
as statins and lifestyle changes [1-3]. While conventional
risk assessment models have been used, there is growing
recognition of the potential of machine learning (ML) in
enhancing CHD prediction [4,5].

ML algorithms have proven their ability to analyze
complex data and identify intricate patterns and relationships
that are not easily detected by traditional statistical meth-
ods [6-10]. By integrating diverse data sources, such as
demographics, medical history, lifestyle habits, and diagnos-
tic findings, these algorithms can predict the likelihood of
developing CHD. This approach offers comprehensive risk
evaluation, adaptability to new data, and the potential to
uncover novel risk factors and disease mechanisms [11].

Several studies have demonstrated the effectiveness of ML
models in deriving quantitative markers for coronary artery
disease and predicting the presence of heart disease. For
example, a study developed and validated a coronary artery
disease–predictive ML model using electronic health records
and assessed its probabilities as in silico scores for coronary
artery disease in participants in 2 longitudinal biobank cohorts
[12]. Another study applied an ensemble ML model for
coronary disease prediction, using ML classifiers to predict
heart disease [13]. These findings highlight the potential of
ML in driving innovation and improving the accuracy of
CHD diagnosis and prediction [14].

However, challenges exist in utilizing ML for CHD
prediction, including data quality, feature selection, model
interpretability, and generalizability. These issues must be
carefully addressed to ensure the reliability and robustness
of the predictive models. Rigorous validation, regulatory

compliance, and effective communication strategies are
essential for its successful integration into clinical practice.

While several established CHD prediction models rely on
traditional statistical techniques with predefined risk factors,
they are limited by linear assumptions and struggle with
complex, high-dimensional datasets. This restricts their ability
to uncover novel or subtle risk factors. In contrast, ML
models can handle these complexities, offering more nuanced
and accurate predictions by identifying nonlinear interactions
and discovering previously overlooked factors. Therefore,
ML may enhance the overall understanding of CHD and
improve both risk assessment and prevention strategies.

This study aimed to address the role of ML techniques in
predicting incident CHD and identifying novel risk factors.
This study sought to deepen our understanding of the factors
contributing to CHD development by analyzing a comprehen-
sive dataset. These findings will enhance risk assessment,
enabling the development of personalized interventions and
preventive strategies.

Methods
Study Design and Participants
The Suita Study, a prospective population-based cohort study,
was conducted in Suita City, Osaka, Japan. From 1989 to
1999, a total of 7672 men and women aged 30-84 years who
did not have a previous history of cardiovascular disease were
recruited for the study. Participants were selected from the
population registry of the municipality and were followed
up every 2 years for an average of 15 years until their first
occurrence of stroke, myocardial infarction (MI), death, or
relocation.

After excluding participants with missing outcome data
and removing unnecessary variables, the analysis included
7260 participants and 28 variables. Opt-out procedures were
implemented for those who preferred not to participate in this
study. Informed consent was obtained from all participants
at the time of enrollment. The study followed the Trans-
parent Reporting of a Multivariable Prediction Model for
Individual Prognosis or Diagnosis and Artificial Intelligence
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(TRIPOD+AI) statement guidelines for reporting prediction
models in medicine, and we have added the completed
checklist in Checklist 1 [15].
Ethical Considerations
The study was conducted in compliance with the ethi-
cal standards outlined in the Declaration of Helsinki, and
approval was granted by the Institutional Review Board at
the National Cerebral and Cardiovascular Center (approval
R21024-2). As this study involves secondary data analysis,
it is important to note that the original informed consent,
obtained during the primary data collection, permits the
use of the data for secondary analyses without requiring
additional consent from participants. Participants’ privacy
was protected by anonymizing or deidentifying the data to
prevent identification.
Outcome
The primary outcome was CHD, including MI, sudden death
within 24 hours of acute illness onset, and coronary artery
disease requiring bypass surgery or intervention. Medical
records were carefully reviewed by hospital doctors or
researchers who were blinded to the baseline data to provide
an unbiased approach to the analysis. MIs were classified as
definite or probable according to the criteria established by
the MONICA Project [16].

Every 2 years, each participant’s health was evaluated at
the National Cerebral and Cardiovascular Center in Osaka,
Japan, to detect the occurrence of CHD. Yearly question-
naires were also completed by all participants by mail or
telephone. CHD surveillance was completed by systemati-
cally searching for death certificates [17,18].
Predictors
Predictors were measured at baseline and processed according
to a standardized protocol. A comprehensive and prospec-
tive data collection process was implemented, encompass-
ing various aspects such as demographics, medical history,
medical imaging, laboratory data, lifestyle habits, and
outcomes.

Blood Pressure and Physical Measurements
Blood pressure was measured in each participant using a
mercury column sphygmomanometer, an appropriately sized
cuff, and a standardized protocol to ensure accuracy and
precision [17]. Before the initial blood pressure reading, the
participants were instructed to rest for at least 5 minutes
to establish a stable baseline. Blood pressure readings were
obtained by averaging the second and third measurements,
which were performed at intervals of more than 1 minute to
allow for adequate observation and recording. Hypertension
was defined as systolic blood pressure ≥140 mm Hg, diastolic
blood pressure ≥90 mm Hg, or the use of antihypertensive
medications.

BMI was calculated as weight (kg) divided by the square
of height (m2).

Biochemical Measurements
At baseline, routine blood tests were conducted, including
measurements of total cholesterol, high-density lipoprotein
cholesterol (HDL-c), and fasting glucose levels. Non-HDL-c
was calculated by subtracting HDL-c from total cholesterol.
Diabetes mellitus was diagnosed if participants had fasting
plasma glucose (FPG) ≥126 mg/dL, a non-FPG ≥200 mg/dL,
or the use of diabetes mellitus medication.

The estimated glomerular filtration rate (eGFR; mL/min/
1.73 m2) was calculated according to the original Modifi-
cation of Diet in Renal Disease equation modified by the
Japanese coefficient (0.881) as follows: 0.881×186×serum
creatinine−1.154 × age−0.203 × (0.742 if female) [19].

Imaging Diagnostics
Carotid artery measurements were performed using a
high-resolution ultrasound machine to assess atherosclerotic
indices, specifically intima-media thickness (IMT), on both
sides of the common carotid artery (CCA), carotid artery
bulb, internal carotid artery, and external carotid artery. The
maximum IMT in the CCA (IMT_cMax) was defined as the
highest measurable IMT in the scanned CCA regions, while
the maximum IMT (IMT_MAX) was the highest measurable
IMT across the entire scanned area, including the CCA, bulb,
internal carotid artery, and external carotid artery on both
sides [20].

Atrial fibrillation was checked by standard 12-lead ECGs
from all participants and was determined by well-trained
physicians [18].

Lifestyle and Medical History
Smoking status and drinking statuses were categorized as
current, quit, or never. A questionnaire was used to ask
participants about their past and present history of CHD.
Sample Size
All available data were used, and no formal sample size
calculation was performed. The dataset included 7260
participants, among whom 305 had CHD, with 28 predictors
selected after the feature selection process used in the model.
Based on the events per predictor ratio, which is approxi-
mately 10.89 (305/28), the sample size is sufficient to ensure
model stability and reliability [21,22]. Therefore, this dataset
is adequate to answer the research questions.
Missing Data
Missing data analysis was conducted, and variables with more
than 30% missing values were excluded to enhance model
robustness. Missing data were imputed using Multivariate
Imputation by Chained Equations. See Multimedia Appendix
1 for details on the percentage of missing data for each
variable before imputation.
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Statistical Analysis Methods

Descriptive Analysis
Continuous variables were summarized using means and
SDs for normally distributed data, or medians and IQR
for nonnormally distributed data. Categorical variables
were reported as frequencies and percentages. To compare
differences in patient characteristics based on CHD incidence
(yes or no), we used various statistical tests including 2-tailed
Student t tests, Mann‒Whitney U tests, or chi-square tests, as
appropriate.

Feature Selection
Feature selection was conducted in a stepwise manner to
ensure that only the most relevant variables were included
in the predictive models. Initially, variables with more than
30% missing data were excluded to avoid potential bias from
imputation. Following this, a correlation matrix was used
to identify and remove variables with high multicollinear-
ity, defined as having a correlation coefficient greater than
0.8. See correlation coefficients heat map in the Multimedia
Appendix 2 for details. The next step involved applying the
least absolute shrinkage and selection operator regression.
This technique shrinks the coefficients of less significant
predictors toward zero, effectively removing them from the
model, and was performed using cross-validation to identify
the most important features based on the data. Finally, after
statistical feature selection, medical knowledge was applied
to confirm the clinical relevance of the remaining variables.
Important predictors such as age, glucose levels, HDL-c,
and blood pressure were retained, given their established
association with CHD. The list of variables (predictors)
used for model development was described in Multimedia
Appendix 3.
Development of ML Models

Overview
The goal of this analysis was to predict the incidence of
CHD using ML models and examine the contribution of
each risk factor to the CHD incidence. A comprehensive
process was followed, which included descriptive analysis,
feature selection, model training, hyperparameter optimiza-
tion, and interpretability through Shapley Additive Explana-
tion (SHAP) values.

To manage the imbalance between CHD and non-CHD
cases, we used down sampling on the majority class (non-
CHD) to create a balanced dataset. This approach helps
to ensure that the models do not disproportionately favor
the majority class during training, improving prediction
performance on the minority class.

The dataset was split into training (80%) and testing (20%)
sets while maintaining balanced target variable distributions
across both. Next, one-hot encoding was applied to convert
categorical variables into a binary format, and normalization
was performed to scale numerical features.

Several ML algorithms were implemented to compare
their predictive power. Logistic regression (LR) was used
as a baseline model, offering simplicity and interpretability
[23]. Random forest (RF), an ensemble learning method,
was used due to its strength in handling high-dimensional
data and offering feature-importance insights [8,24]. Support
vector machines (SVMs) with radial basis kernels were
used for their effectiveness in nonlinear classification tasks
[25,26]. Extreme Gradient Boosting (XGBoost) is an ML
algorithm that improves model performance by using a
series of decision trees, where each tree corrects the mis-
takes of the previous one. This sequential approach helps
make predictions more accurate. Light Gradient-Boosting
Machine (LightGBM) is another efficient algorithm that
works similarly to XGBoost but is designed to be faster and
more scalable, especially when working with large datasets
and many features. Both algorithms are known for their
high performance in handling complex data and large-scale
problems [9,27].

Model Evaluation
We used 5-fold cross-validation during model training to
ensure robustness and mitigate overfitting. Hyperparameter
optimization was conducted using a grid search approach.
The model’s performance on the testing set was evaluated
using 5 metrics: accuracy, sensitivity, specificity, precision,
area under the curve (AUC), and F1-score [15].

Calibration plots are used to evaluate the predictive
accuracy of ML models in estimating CHD incidence.
Calibration measures how closely the predicted absolute risk
corresponds to the observed (true) risk across groups of
patients categorized into different risk levels. The overall
observed-to-expected (OE) ratio is calculated by dividing the
total observed events by the total expected events for the
entire population. For each decile, the OE ratio is determined
by dividing the observed events within that decile by the
expected events for the same decile. An ideal model is
represented by a straight line bisecting the calibration plot,
with an OE ratio of 1, indicating perfect calibration. An OE
ratio <1 suggests overprediction, while a ratio >1 indicates
underprediction [15].

Decision curve analysis (DCA) assesses the clinical use
of ML models for predicting CHD incidence. DCA uses net
benefit as a metric, reflecting the tradeoff between true-pos-
itive and false-positive predictions for a specific strategy
[15,28,29].

Model Interpretation
SHAP is a method used in ML to make the predictions of
a model more understandable. It helps explain how each
input feature (such as age, cholesterol levels, or blood
pressure) affects the model’s decision. Essentially, SHAP
breaks down the prediction to show how much each feature
contributes to the final result, allowing us to see which factors
are most important for predicting a condition like CHD
[8-10,30]. SHAP summary plots visualized the importance
of key features, while SHAP dependence plots highlighted the
non-linear relationships between features and CHD incidence.
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Results
Study Participants’ Characteristics
In this study, 7260 participants were analyzed, of which
305 (4.2%) were diagnosed with CHD. The median age of
participants with CHD was 63 (IQR 56-71) years , which
was significantly older than that of those without CHD,
whose median age was 55 (IQR 44-65) years. CHD was
more prevalent in men (n=202, 66.2%) compared to women
(n=103, 33.8%), and this gender difference was statistically
significant.

Several cardiovascular risk factors were also associated
with CHD. Participants with CHD had higher systolic and
diastolic blood pressures. The eGFR was lower in participants
with CHD compared to those without. The IMT of CCAs,
IMT_cMax, was also significantly higher in patients with
CHD (1.10 mm vs 1.00 mm; P<.001).

BMI and waist circumference were also higher in
participants with CHD, indicating a greater degree of obesity.

Additionally, lipid profiles showed significant differences,
with lower HDL-c levels and higher non-HDL-c and
triglyceride levels in patients with CHD.

Higher glucose levels and white blood cell counts were
observed in participants with CHD, along with elevated
hemoglobin levels. Regarding lifestyle factors, smoking was
more common in those with CHD, while drinking status did
not differ significantly between the 2 groups.

Regarding lifestyle factors, current smoking was more
prevalent among participants with CHD (36.1% vs 29.0%;
P<.001), while drinking status did not significantly differ
between the groups.

In terms of comorbidities, atrial fibrillation, hypertension,
diabetes mellitus, and dyslipidemia were all significantly
more common in participants with CHD, as outlined in Table
1.

Table 1. Characteristics of study participants with and without CHDa incidence (Japanese participants aged 30‐84 years, Suita Study). CHD was
diagnosed by a first-ever acute myocardial infarction, sudden cardiac death within 24 hours of illness, or coronary artery disease followed by bypass
or angioplasty. Values are presented as mean (SD) for continuous variables with approximately normally distribution or by median (IQR) with
skewed distribution and n (%) for categorical variables. Differences in characteristics were evaluated by using the unpaired 2-tailed Student t test,
Wilcoxon rank sums test, or chi-square test.

CHD P value
No (n=6955) Yes (n=305)

Age (years), median (IQR) 55.0 (44.0-65.0) 63.0 (56.0-71.0) <.001
Sex, n (%) <.001
  Male 3147 (45.2) 202 (66.2)
  Female 3808 (54.8) 103 (33.8)
SBPb (mm Hg), median (IQR) 123 (110-137) 138 (125-153) <.001
DBPc (mm Hg), median (IQR) 77.0 (70.0-85.0) 83.0 (74.0-89.0) <.001
IMT_cMaxd (mm), median (IQR) 1.00 (0.80-1.10) 1.10 (1.00-1.30) <.001
eGFRe (mL/min/1.73 m²), mean (SD) 104 (32.2) 95.3 (63.3) .014
BMI (kg/m²), mean (SD) 22.5 (3.10) 23.3 (3.26) <.001
Body fat (%), mean (SD) 23.2 (6.32) 22.6 (7.06) .15
Waist circumference (cm), median (IQR) 80.0 (73.0-86.0) 83.0 (77.0-90.0) <.001
HDL-cf (mg/dL), median (IQR) 53.0 (44.0-63.0) 46.0 (38.0-56.0) <.001
non-HDL-c (mg/dL), mean (SD) 152 (36.9) 172 (40.5) <.001
Triglycerides (mg/dL), median (IQR) 98.0 (70.0-143) 121 (90.0-174) <.001
Calcium (mg/dL), mean (SD) 9.35 (0.46) 9.34 (0.43) .61
Fructosamine (μmol/L), median (IQR) 251 (237-266) 257 (242-276) <.001
Glucose (mg/dL), median (IQR) 95.0 (89.0-101) 100 (93.0-109) <.001
WBCg count (/mm³), median (IQR) 5.33 (4.48-6.36) 5.65 (4.81-6.78) <.001
RBCh count (10³/mm³), mean (SD) 4.53 (0.44) 4.60 (0.46) .008
Smoking status, n (%) <.001
  Current 2019 (29) 110 (36.1)
  Past 1091 (15.7) 79 (25.9)
  Never 3845 (55.3) 116 (38)
Drinking status, n (%) .27
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CHD P value
No (n=6955) Yes (n=305)

  Current 3613 (51.9) 152 (49.8)
  Past 156 (2.24) 11 (3.61)
  Never 3186 (45.8) 142 (46.6)
Atrial fibrillation, n (%) 123 (1.77) 20 (6.56) <.001
Hypertension, n (%) 2056 (29.6) 172 (56.4) <.001
Diabetes mellitus, n (%) 426 (6.13) 49 (16.1) <.001
Dyslipidemia, n (%) 5280 (75.9) 265 (86.9) <.001

aCHD: coronary heart disease.
bSBP: systolic blood pressure.
cDBP: diastolic blood pressure.
dIMT_cMax: maximum intima-media thickness of common carotid arteries.
eeGFR: estimated glomerular filtration rate.
fHDL-c: high-density lipoprotein cholesterol.
gWBC: white blood cell.
hRBC: red blood cell.

Model Performance
The performance metrics of the 5 ML models used in our
CHD prediction study provide valuable insights into their
effectiveness, as shown in Table 2.

Table 2. Performance metrics and 95% CIs for machine learning models predicting CHDa incidence (Japanese participants, aged 30‐84 years, Suita
Study).
Model Accuracy Sensitivity Specificity Precision AUCb F1-score
LRc 0.66 (0.58‐0.75) 0.59 (0.46‐0.71) 0.74 (0.62‐0.84) 0.69 (0.55‐0.81) 0.66 (0.57‐0.75) 0.64 (0.52‐0.73)
RFd 0.73 (0.64‐0.80) 0.74 (0.62‐0.84) 0.72 (0.61‐0.83) 0.73 (0.61‐0.84) 0.73 (0.65‐0.80) 0.73 (0.64‐0.82)
SVMe 0.71 (0.62‐0.80) 0.70 (0.59‐0.81) 0.72 (0.62‐0.83) 0.72 (0.60‐0.84) 0.71 (0.63‐0.79) 0.71 (0.61‐0.80)
XGBoostf 0.72 (0.64‐0.80) 0.74 (0.63‐0.84) 0.70 (0.58‐0.82) 0.71 (0.60‐0.82) 0.72 (0.64‐0.80) 0.73 (0.63‐0.81)
LightGBMg 0.50 (0.43‐0.58) 1.00 (1.00‐1.00) 0.00 (0.00‐0.00) 0.50 (0.41‐0.59) 0.5 (0.49‐0.57) 0.67 (0.58‐0.74)

aCHD: coronary heart disease.
bAUC: area under the curve.
cLR: logistic regression.
dRF: random forest.
eSVM: support vector machine.
fXGBoost: Extreme Gradient Boosting.
gLightGBM: Light Gradient-Boosting Machine.

RF emerged as the strongest model for CHD prediction in
this study, achieving the highest overall performance with an
accuracy of 0.73 (95% CI 0.64‐0.80), sensitivity of 0.74 (95%
CI 0.62‐0.84), specificity of 0.72 (95% CI 0.61‐0.83), and an
AUC of 0.73 (95% CI 0.65‐0.80). These results highlight its
balanced ability to identify both CHD and non-CHD cases
effectively. In comparison, XGBoost delivered robust, yet
slightly inferior, results with an accuracy of 0.72 (95% CI
0.64‐0.80), sensitivity of 0.74 (95% CI 0.63‐0.84), specific-
ity of 0.70 (95% CI 0.58‐0.82), an AUC of 0.72 (95% CI
0.64‐0.80), and an F1-score of 0.73 (95% CI 0.63‐0.81).
SVM demonstrated competitive performance, achieving an
AUC of 0.71 (95% CI 0.63‐0.79), but ranked slightly behind
RF and XGBoost. In contrast, LightGBM, despite its perfect
sensitivity of 1.00 (95% CI 1.00‐1.00), showed a specificity

of 0.00 (95% CI 0.00‐0.00) and an AUC of 0.50 (95% CI
0.49‐0.57), rendering it unsuitable for this task. LR, while
serving as a baseline model, exhibited moderate performance
with an accuracy of 0.66 (95% CI 0.58‐0.75), sensitivity
of 0.59 (95% CI 0.46‐0.71), specificity of 0.74 (95% CI
0.62‐0.84), and an AUC of 0.66 (95% CI 0.57‐0.75), but
lacked the sensitivity required for effective CHD prediction.

The calibration curves for the 5 models (Figure 1) and the
OE ratios by decile (Figure 2) provide critical insights into
their predictive reliability. Among the models, RF demonstra-
ted excellent calibration, with predicted probabilities closely
aligning with observed outcomes across all deciles. This
strong calibration is complemented by its performance in
DCA (Figure 3).
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Figure 1. Calibration plots for machine learning models predicting CHD incidence (Japanese participants, aged 30‐84 years, Suita Study). CHD:
coronary heart disease; LightGBM: Light Gradient-Boosting Machine; XGBoost: Extreme Gradient Boosting.

Figure 2. Calibration plots displaying observed-to-expected ratios for each decile of predicted CHD incidence risk (Japanese participants, aged 30‐84
years, Suita Study). CHD: coronary heart disease; LightGBM: Light Gradient-Boosting Machine; SVM: support vector machine; XGBoost: Extreme
Gradient Boosting.
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Figure 3. Decision curve analysis comparing machine learning models for predicting CHD incidence (Japanese participants, aged 30‐84 years, Suita
Study). CHD: coronary heart disease; LightGBM: Light Gradient-Boosting Machine; XGBoost: Extreme Gradient Boosting.

In terms of clinical use, as illustrated in Figure 3, all models
exhibit a similar positive net benefit when the threshold
is below 0.5, meaning that using the predictive models is
better than not using any model (treat none). However,
when the threshold exceeds 0.5, the models tend to decline
rapidly, with LR and XGBoost showing the most pronounced
decrease, declining earlier compared to the other models.

Based on the performance metrics, RF emerges as the best
model for CHD prediction in this study due to its highest
overall accuracy, balanced sensitivity and specificity, strong
AUC, excellent calibration, and robust clinical use across
various threshold probabilities.
Model Interpretation
In Figure 4, the bar plot on the left ranks the top features
contributing to CHD prediction, with IMT_cMax identified
as the most influential variable, followed by systolic blood
pressure (SBP), HDL-c, non-HDL-c, and eGFR. This ranking
emphasizes the significance of arterial health, blood pressure
regulation, lipid levels, and kidney function in assessing CHD
risk. The SHAP summary heat plot on the right provides
a detailed visualization of how each feature influences
individual model predictions. It shows that higher values of
IMT_cMax, non-HDL-c, and blood pressure are positively
associated with an increased likelihood of CHD, whereas
lower levels of protective factors like HDL-c and eGFR
are associated with a higher risk of CHD. Other important

variables, such as age, glucose levels, and triglycerides, also
contribute significantly, with older age and impaired glucose
regulation being linked to a higher CHD risk. Additionally,
markers of inflammation like white blood cell count and other
factors such as calcium levels, sex, body fat, and BMI play
roles in determining CHD risk.

Figure 5 consists of several SHAP dependency plots that
illustrate the relationship between each key variable and
CHD risk in more detail. For IMT_cMax, there is a positive
association with CHD risk, showing that as the thickness of
the carotid artery increases, so does the risk of CHD. The
eGFR plot shows that lower eGFR values are associated
with a higher risk of CHD, while higher eGFR values are
associated with a lower risk, indicating the crucial role of
kidney function in cardiovascular health. Non-HDL-c shows
a generally positive association with CHD, where higher
levels correspond to a higher risk. For SBP, the risk of
CHD increases sharply with rising SBP values. HDL-c is
inversely related to CHD risk, indicating its protective role,
while higher triglycerides (TG) are linked to increased risk,
especially at moderate levels. Age and glucose levels show
a direct relationship with CHD risk, whereas older age and
higher glucose levels are associated with increased risk. The
SHAP value for diastolic blood pressure (DBP) also shows
a positive relationship, suggesting that higher DBP levels
contribute to the increased risk of CHD.

JMIR CARDIO Vu et al

https://cardio.jmir.org/2025/1/e68066 JMIR Cardio 2025 | vol. 9 | e68066 | p. 8
(page number not for citation purposes)

https://cardio.jmir.org/2025/1/e68066


Figure 4. Contribution of variables to CHD incidence prediction using SHAP values (Japanese participants, aged 30‐84 years, Suita Study). (A) The
bar plot shows each variable’s contribution to CHD, with bar length indicating the contribution extent. (B) The heat plot of SHAP values illustrates
the relationships between variables and CHD. Purple signifies a positive relationship and yellow a negative one. Each point represents a participant,
with the x-axis showing SHAP values and the y-axis indicating variable importance. bf: body fat; Ca: calcium; CHD: coronary heart disease; DBP:
diastolic blood pressure; eGFR: estimated glomerular filtration rate; Frct: Fructosamine; Hb: hemoglobin; htn: hypertension; IMT_cMax: maximum
intima-media thickness of common carotid arteries; HDL-c: high-density lipoprotein cholesterol; SBP: systolic blood pressure; smk_sts: smoking
status; TG: triglycerides; WBC: white blood cell; wt20: weight at age of 20 years.
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Figure 5. SHAP dependency plots showing the relationship between key variables and CHD risk (Japanese participants, aged 30‐84 years,
Suita Study). CHD: coronary heart disease; DBP: diastolic blood pressure; eGFR: estimated glomerular filtration rate; IMT_cMax: maximum
intima-media thickness of common carotid arteries; HDL-c: high-density lipoprotein cholesterol; SBP: systolic blood pressure; SHAP: Shapley
Additive Explanation; TG: triglycerides.

Discussion
Principal Findings
This study provides a comprehensive evaluation of the role
of ML in predicting CHD. Among a cohort of 7260 partic-
ipants, 305 were diagnosed with CHD. The analysis not
only validated several well-established cardiovascular and
metabolic risk factors but also identified novel predictors of
CHD. Importantly, the findings underscore the use of ML
models and the SHAP method in elucidating key contributors
to CHD risk, with RF demonstrating superior performance,
excelling in both discrimination and calibration for CHD
prediction.

Comparison With Prior Work

Arterial Health
Carotid IMT emerged as the strongest predictor of CHD in
our study. IMT_cMax, which measures the thickness of the
CCAs, is a well-established indicator of atherosclerosis and

future cardiovascular events, including MI and stroke [31,32].
Multiple studies support this, showing that even a small
increase in IMT correlates with a significantly elevated risk of
acute MI and stroke. For instance, in the Atherosclerosis Risk
in Communities study, a 0.1 mm increase in IMT corre-
sponded to a 50% increase in CHD risk [20,31]. There-
fore, measuring IMT through noninvasive techniques like
ultrasound has important clinical applications in evaluating
subclinical atherosclerosis and assessing CHD risk. Given
that many coronary artery assessments are invasive, the use
of ultrasound to measure carotid artery IMT offers a valuable
alternative for early detection and risk stratification.

Blood Pressure, Lipid Profiles, and Glucose
SBP and hypertension were among the most critical pre-
dictors of CHD, aligning with the well-established associ-
ation between elevated blood pressure and cardiovascular
risk [33,34]. Both SBP and diastolic blood pressure were
prominent, emphasizing the need for effective blood pressure
management in reducing CHD risk [33,35].
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Furthermore, non-HDL-c and triglycerides were strongly
associated with CHD, confirming the importance of lipid
management in cardiovascular health [36-39]. Glucose levels
were also significant, suggesting that monitoring glucose
metabolism is essential in cardiovascular risk management
[40-42].

Renal Function and Metabolic Factors
The role of eGFR as a key predictor highlights the connec-
tion between renal function and CHD [43]. Impaired kidney
function has been increasingly recognized as a cardiovas-
cular risk factor, particularly due to its association with
hypertension and dyslipidemia [44,45]. The results support
incorporating kidney function markers in future CHD risk
assessments. In addition, metabolic markers and body fat
percentage were identified as important predictors, signaling
the impact of obesity-related factors on cardiovascular health.
These findings suggest that obesity-related measures beyond
BMI should be considered in CHD risk assessments.

Sex
The sex-specific analysis highlighted the protective effect
of being female, consistent with existing research showing
that premenopausal women are generally at a lower risk of
developing CHD due to protective hormonal factors [46,47].
These findings suggest the need for sex-specific strategies in
managing CHD risk.
Potential Risk Factors
One of the strengths of this study is its ability to uncover
novel predictors, such as white blood cell count, which
serves as a marker of systemic inflammation. Inflammation is
increasingly recognized as a key player in the development

of atherosclerosis and cardiovascular events. Additionally,
lower calcium levels were associated with a higher risk
of CHD, highlighting the importance of mineral balance
in cardiovascular health. Furthermore, body fat percentage
and BMI were highlighted as significant predictors of CHD,
further emphasizing the need for a comprehensive evaluation
of obesity-related metrics in cardiovascular risk assessments.
These novel insights could lead to more personalized
prevention strategies for individuals who may not exhibit
classic cardiovascular risk profiles.
Limitations
Despite the promising results, several limitations of the study
need to be considered. First, the quality of the data, partic-
ularly with respect to missing values, poses a challenge.
Although feature selection techniques, such as least abso-
lute shrinkage and selection operator regression and SHAP
analysis, were used to mitigate this, the impact of missing
data remains a potential limitation. Second, the generaliza-
bility of the findings is limited because the study relies on
a specific population. The results may not fully apply to
populations with different demographic and clinical charac-
teristics. To address this, future research should focus on
evaluating these ML models in real-world clinical settings,
where variability in clinical practice, missing data, and other
factors may affect model performance.
Conclusions
This study demonstrates the potential of ML in predicting
CHD. The SHAP method enhances the interpretability of
the prediction model, aiding health care professionals in
clinical practice by supporting effective risk management and
intervention strategies.
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